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AGENDA

▪ Terrestrial Energy Recovery Applications

▪ JPL’s System-Level Requirements Development 

▪ JPL Graphite Heat Exchanger Development

▪ Graphite Heat Exchanger Testing Results & Analysis

▪ Conclusions
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United States Energy Flow

• Waste Heat

To Be 

“Harvested”

59.4 Quads

National Aeronautics and Space Administration

• Up ~ 5Quads 

From 2009



Terrestrial Industrial Process Waste Heat Recovery

➢ System Solutions Needed to Recover Energy Throughout the Industrial Processing 

Complex

➢ Produce Power 

➢ Residential & Commercial Space Heating

➢ Radiant Collectors, Rankine cycles, Stirling cycles, & Thermoelectric Conversion

➢ High-Temperature TE & Structural Materials and Systems; High Temperature Thermal Energy Storage

➢ Steel Industry

➢ Electric Arc & Blast Furnaces, Steel Slabs, Slag By-Products

➢ 10’s of Megawatts of Thermal Energy Available in Each Potential Location in Steel Processing

➢ Process Temperatures Available: 200-1000°C

➢ 13 GW Total Potential Power Production in U.S. Alone

➢ Various Other Industrial Processes

➢ Glass Furnaces, Aluminum Processes, Petro-chemical All Have Common Requirements

➢ Process Temperatures Available: 760 – 1400°C

➢ Another >39 GW Potential Power Production in These Industries in U.S.

➢ Large International Interest in WHR Systems

➢Latest International Conferences on Thermoelectrics 2016, Wuhan, China & 2015, Dresden, Germany

➢Energy Harvesting - 2014 U.S. Emerging Technology Conference & Exhibition, Santa Clara, CA

www.dpp-Europe.com



Terrestrial Waste Energy Recovery

➢ Thermoelectric Systems Considered a Prime Energy Recovery Technology Candidate / 

Option in Many Terrestrial Applications 

➢ Terrestrial Energy Recovery Goals are Often Tied to:

➢Energy Savings

➢Environmental Savings and Impacts

➢Maximizing Conversion Efficiency

➢Maximum Power Output

➢ However, JPL is Currently Working on System Designs Where the Critical Design 

Metric is Maximizing Specific Power (W/kg) 

➢Knowing Its Relationship to Maximum Power or Efficiency Points is Key

➢Texh = 823 K; Tamb = 273 K

➢ System Analysis Shows This Design Metric Requires High Power Flux and High Heat 

Flux TE Modules

➢ Cost-Effectiveness and Performance Are Constant Requirements

Jet Propulsion Laboratory

California Institute of Technology



TE System Design Regime Results 

Texh = 823 K, Tcold = 273 – 323 K

• High TE Device Specific Power 

Regime Identified

– Coincides with High Efficiency 

Regimes

– But Coincides With  Low Power 

Regions

Jet Propulsion Laboratory

California Institute of Technology

• Also Critical to Identify and Map the 

Constant TE Device Heat Flux Regions

• High TE Device Heat (and Power) Flux 

Regions Correspond with High Specific 

Power Regions

• Design Challenge Associated with High S.P.  

JPL developing high performance heat 
exchangers to meet these heat flux and 
heat transfer requirements

Current Design Region



Relating System-Level Metrics to Heat Exchanger Metrics

• Heat exchanger and TE module heat 

fluxes also readily quantified and 

interrelated 

• Module level and TE element level 

information are readily quantified and 

interrelated

• TE module and TE element conditions 

are then strongly coupled to this map 

Jet Propulsion Laboratory

California Institute of Technology

Current Design Region

(F = Module Fill Factor;  = Module Conversion Efficiency;
P = Power Flux)



Critical Heat Exchanger Metrics & Requirements

Hot Side HEX 

Materials

κ, Thermal 

Conductivity 

(W/m-K)

ρ, Density  

(gm/cm3)

κ/ρ

[(W/m-

K)/(g/cm3)]

CTE

(10-6/°C)

Fabrication 

Process

Coating

Required

Government 

Funding

Ti3Al 22-50 from high to 

low T

4.0 ~5.5-12.5 11.0-15.0 EBM

(Vacuum)

No DARPA

SiC 70-80 @ 750 K 3.2 25 3.5-4.0 MI No Unknown

AlN 85 @ 600 K  [6] 3.26 26.1 4.5 Sintering No Unknown

C-C Fiber 6-32 @ 873 K 1.8-2.2 2.7-14.5 0.54 [16] CVD, PIP Yes Unknown

Graphite 40-70@973 K 1.3-1.8 22.2-38.9 7.5 [14] Various Yes Unknown

Stainless Steel 

(Austenitic)

24.2-25.4 @800 K 7.9-8.2 ~3.0-3.1 16-18 Various 

Standard 

Commercial

No SERDP 

(2010)

Inconels & 

Other Nickel-

Based Metals

21 @ 873 K [15] 8.4 2.4 15.7 [15] Various 

Standard 

Commercial

No No

Jet Propulsion Laboratory
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Table 1 – Light-Weight Hot-Side HEX Materials and Other Common Heat

Exchanger Materials Compromises in TEG Systems - Engineering Properties.



Graphite Heat Exchanger Technology

Challenge: High Performance Heat Exchange Technology for Terrestrial and 

Planetary Energy Recovery and Thermal Management

• Demonstrated Minichannel Graphite Heat Exchange Technology @ JPL

– Minichannels shown to right

– Could be gas or liquid HEX

• High Temperature Heat Exchange

– 500 m channel widths

– 4.8 Wth/cm3

– Low Density, Light weight - 128 grams

– High Thermal Conductivity

– Low CTE

– Reasonably good strength

– Good manufacturability

Looking to additively manufacture this unique structure

Lightweight, High Temperature, High-Performance Heat Exchange Structure



COMSOLTM Fluid Flow / Thermal Analysis

Jet Propulsion Laboratory

California Institute of Technology

• COMSOLTM Thermal Analysis on One Channel of the Graphite Heat Exchanger 
Design (Channel Symmetry Assumed)

• Channel dimensions shown above 0.508 mm (wide) x 58.42mm (long 
dimension) x 20.3 mm (deep in flow direction). 



Empirical Model vs. COMSOL Model Comparison

Jet Propulsion Laboratory

California Institute of Technology

Table 2 – Heat Flux and Outlet Temperature Comparison Between COMSOLTM Model and Empirical Model

Surface Average Heat Flux is at the TEG Hot Side Surfaces in Figure 3

• Empirical Correlation Model also used in HEX Design
• Based on Heat Transfer and Pressure Drop Correlations 

Found in Kays and London, Incropera and Dewitt, and 
White
• Laminar Flow (Re < 500)
• Nud = function (aspect ratio - b/a)
• f*Re = function (aspect ratio – b/a)

Nud

b/a

8.2

100

b/a

f Re

1.057



Graphite Heat Exchanger Test System 

Jet Propulsion Laboratory

California Institute of Technology

• Open Flow System
• Air Flow Rate = 0.012 kg/second
• High temperature air at 550C 



Heat Transfer Test Results

Jet Propulsion Laboratory

California Institute of Technology

• Graphite HEX transferred about 1050 W (±110 W) thermal energy between the two-sides of the dual-side 
heat exchanger at near design operating conditions.  

• The pressure drop across HEX measured 0.066 psi (±0.002 psi) at the targeted design flowrate. 
• The average heat exchanger interface heat flux across our dual-sided cold interfaces was estimated at 

~16.9 W/cm2, and could be as high as 24.5 W/cm2 on one side (Target: 20 W/cm2)
• This HEX is capable of about 1120 W as cold-side temperature condition is brought closer to design 

condition (9 C cooler cold surface)
• Very good performance for first test of graphite HEX
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Conclusions

• Advanced graphite heat exchanger successfully designed and 

fabricated at JPL

• Lightweight minichannel design performed very close to design 

expectations

– High heat transfer

– Low Pressure drop

• Design confirmed for high temperature application in Thermoelectric 

Energy Recovery System

• Demonstrated coupling between TE Energy Recovery system metrics 

and heat exchanger design metrics

• Demonstrates high performance heat transfer with:

– High thermal conductivity structure

– Low coefficient of thermal expansion structure

– Lightweight, low density structure

– Good structural properties
14
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